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SumARY: The regioselectivity of the deprotonation of the &c-ergo- 
linyl-urea 1 (terguride) depends on the substituent at the indole nitro- 
gen. A tert.-butyl-dimethylsilyl (TBDMS) protecting group facilitates 
the rem= of the angular benzylic proton in position 10. The reac- 
tion of the lo-lithio compound 5 with electrophiles affords cis or 
trans fused products, depending on reagent and reaction conditions. 

Often lithiation allows electrophilic reactions in positions which are not easily acces- 

sible to direct substitution. This metalation can be performed by bromine-lithium ex- 

change' or by deprotonation with a strong lithium base. The latter reaction has been 

studied in different aromatic systems2 and also successfully applied to indole deriva- 

tives-3 We communicate our results on the regio- and stereoselectivity of the deproto- 

nation of the l-substituted l,l-diethyl-3-((5R,8S,1OR)-6-methyl-8-ergolinyl)-urea deriva- 

tives 2 and 4 and the stereochemistry of the ensuing reaction with electrophiles. 

Dimethylamino-ergolinyl-sulfone 2 is deprotonated in position 2 by tert.-butyllithium as 

anticipated by comparison with similar reactions of acceptor substituted indole deriva- 

tives.3 Reactive electrophiles, like S-methyl-methylthiosulfonate,4 furnish 2-substituted 

ergoline derivatives.5 

a: CH2C12, solid KOH, NBu4HS04, (CH3)2NS02Cl, r.t., 16 h (36%); b: THF, tert.- 

butyllithium, -78'C, 30 min; c: THF, CH3S02SCH3, -78OC, 30 min (67%). 

By contrast, the I-silylated &I-ergolinyl-urea 4 is metalated in 

position 10 as determined by the isolation of two products 6 and 

electrophile.6 

the angular, benzylic 

7 after addition of an 
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HNCONEt 2 
F 

HFoNEt2 HNCONEt2 
E 

R’=TBDMS 6 7 

=H 8 9 

a: THF, LDA, TBDMSCl, -20°C to r.t. (73%); b: THF, 10 equiv. tert.-butyllithium,7 

-78"C, 30 min; c: 10 equiv. electrophile in THF, -78"C, 30 min; d: method A: THF 

with 10% water, NBu4F, r.t., 1 h; method B: methanol, 14molar KOH, r.t., 16 h. 

Metalation of a benzylic position by butyllithium has been reported in the tetrahydro% 

carboline and tetrahydro-isoquinoline series, provided suitable donor ligands (e.g. 

methoxymethyl or formamidine) are available in appropriate positions to stabilize the 

lithium cation.' In our case, the &c-urea group apparently enhances the kinetic acidity 

of the lOa-H by concomitant formation of a chelate species 5.' Typically, the 8R-epimer 

of 4 is not metalated under the same conditions. 

With electrophiles, 5 may react at the lo-position under retention or inversion of confi- 

guration with respect to lithium. In a related case Meyers et al. observed inversion 

with methyl iodide and retention with DMSO-d6." The same is observed for 5 (table, entries 

3 and 6). However, on further investigation, we became aware of surprising changes of 

stereoselectivity with varying electrophiles and solvent additives. For instance, addition 

of 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU) totally reverses the face selec 

tivity of methylation from I3 to a (entry 6 vs. 7) whereas ethyl iodide, under identical con- 

ditions, adds to the R-face exclusively (entry 8). The IOa-ethyl derivative may be obtained 

with triethyloxonium fluoroborate (entry 9), the lOa-aldehyde with DMF (entry 11). No chan- 

ges of the facial selectivity are found for other electrophiles, with or without OMPU 

additive. 

At present, we are not in a position to offer a conclusive interpretation of these puzzling 

results. 
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Table: Substitution of I-TBDMS Terguride 4 in Position 10 by Reaction with 
- tert.-Butyllithium and Different Electrophiles 

Reaction Conditions Products Yield [%la' 

Entry Electrophile DMPU R NO. 6 7 617 

1 "20 H a 50 4412 1.12 

2 "20 + a 91 <I > 90 

3 DMSO" - 

"H 

a 81 <l > 80 

4 '6"gN02 H a 14 56 0.25 

5 MgBr2Et20/H20 - H a 23 61 0.37 

6 CH3I C"3 b 6 73 0.08 

7 CH31 + C"3 b 82 10 8 

8 '2"5I t b) 
'2"5 

C 75 < 0.02 

9 (C2"5)30BF4 tb) C 96 trace > 50 

10 CH3S02SCH3 _b) 

'2"5 

SCH3 d 36 36 1 

11 DMF 

;b) 

CHO e 84 1.4 60 

12 CH3N=C=0 CONHCH3 f 17 trace > 10 

13 CH3N=C=S _b) CSNHCH3 9 78 < 0.02 

14 C6H5N=C=0 tb) CONHC6H5 h trace 35 > 0.05 

15 C1COOCH3 _b) COOCH3 i 4 15 0.27 

16 CO(OCH3)2 _b) COOCH3 i 46 <2 >20 

a) Yields of 6a and 7a are determined by HPLC. (The putative alkaloid fraction is defined 
as 100%. HPLC is run on a C-18-RP-column, Waters Millipore Rad-Pak C 18, 10 u, length 
100 mm and 8 rrnn i.d. with UV detection at a = 275 nm and a mobile phase of methanol/ 
water/triethylamine (75:24,95:0.05, v/v/v), flow rate 1 ml/min). Yields of all other 
compounds are determined after chromatography. 

b, DMPU does not significantly affect the ratio of 6/7. 

The crystalline end products 8 and 9 
13 

are prepared by cleavage of the silyl group with 
tetra-n-butyl-ammonium fluoride. 14 

First-order analysis of 'HNMR spectra including assignment of stereochemistry at C-10 

is most straightforward for the thioether derivatives 8d and 9d due to minimal signal 

overlap and a literature precedent for a pair of related C-IO methyl ethers. 15 

One diastereomer lacks any trans diaxial coupling between vicinal protons at C-4/C-5, 

C-7/C-8, and C-8/C-9. This fact is compatible with a chair-like piperidine ring bearing 

the substituent at C-IO in an equatorial position on the B-face of the molecule and the 

side chain at C-8 in an axial position on the opposite side, 9d. 

From the data for the second isomer (trans diaxial coupling between protons at C-4/C-5) 

a trans juncture of rings C and D with a chair-like piperidine ring carrying both substi- 

tuents at C-8 and C-IO in an axial position on the a-side of the molecule is deduced. 

The assignment of the remaining pairs of C-IO epimers is based on similar observations. 

Acknowledgment. We thank Prof. E. Winterfeldt and Prof. J. Mulzer for stimulating 

discussions. 
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